LULC Segmentation of RGB Satellite Image Using FCN-8

08/24/2020
by   Abu Bakar Siddik Nayem, et al.
3

This work presents use of Fully Convolutional Network (FCN-8) for semantic segmentation of high-resolution RGB earth surface satel-lite images into land use land cover (LULC) categories. Specically, we propose a non-overlapping grid-based approach to train a Fully Convo-lutional Network (FCN-8) with vgg-16 weights to segment satellite im-ages into four (forest, built-up, farmland and water) classes. The FCN-8 semantically projects the discriminating features in lower resolution learned by the encoder onto the pixel space in higher resolution to get a dense classi cation. We experimented the proposed system with Gaofen-2 image dataset, that contains 150 images of over 60 di erent cities in china. For comparison, we used available ground-truth along with images segmented using a widely used commeriial GIS software called eCogni-tion. With the proposed non-overlapping grid-based approach, FCN-8 obtains signi cantly improved performance, than the eCognition soft-ware. Our model achieves average accuracy of 91.0 (IoU) of 0.84. In contrast, eCognitions average accu-racy is 74.0 0.60. This paper also reports a detail analysis of errors occurred at the LULC boundary.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro