Low Noise Non-Linear Equalization Using Neural Networks and Belief Propagation

05/13/2019
by   Etsushi Yamazaki, et al.
0

Nonlinearities can be introduced into communication systems by the physical components such as the power amplifier, or during signal propagation through a nonlinear channel. These nonlinearities can be compensated by a nonlinear equalizer at the receiver side. The nonlinear equalizer also operates on the additive noise, which can lead to noise enhancement. In this work we evaluate this trade-off between distortion reduction and noise-enhancement via nonlinear equalization techniques. We first, evaluate the trade-off between nonlinearity compensation and noise enhancement for the Volterra equalizer, and propose a method to determine the training SNR that optimizes this performance trade-off. We then propose a new approach for nonlinear equalization that alternates between neural networks (NNs) for nonlinearity compensation, and belief propagation (BP) for noise removal. This new approach achieves a 0.6 dB gain compared to the Volterra equalizer with the optimal training SNR, and a 1.7 dB gain compared to a system with no nonlinearity compensation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro