Low-Entropy Latent Variables Hurt Out-of-Distribution Performance

05/20/2023
by   Nandi Schoots, et al.
0

We study the relationship between the entropy of intermediate representations and a model's robustness to distributional shift. We train models consisting of two feed-forward networks end-to-end separated by a discrete n-bit channel on an unsupervised contrastive learning task. Different masking strategies are applied after training that remove a proportion of low-entropy bits, high-entropy bits, or randomly selected bits, and the effects on performance are compared to the baseline accuracy with no mask. We hypothesize that the entropy of a bit serves as a guide to its usefulness out-of-distribution (OOD). Through experiment on three OOD datasets we demonstrate that the removal of low-entropy bits can notably benefit OOD performance. Conversely, we find that top-entropy masking disproportionately harms performance both in-distribution (InD) and OOD.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro