Logarithmic divergences: geometry and interpretation of curvature

06/17/2019
by   Ting-Kam Leonard Wong, et al.
0

We study the logarithmic L^(α)-divergence which extrapolates the Bregman divergence and corresponds to solutions to novel optimal transport problems. We show that this logarithmic divergence is equivalent to a conformal transformation of the Bregman divergence, and, via an explicit affine immersion, is equivalent to Kurose's geometric divergence. In particular, the L^(α)-divergence is a canonical divergence of a statistical manifold with constant sectional curvature -α. For such a manifold, we give a geometric interpretation of its sectional curvature in terms of how the divergence between a pair of primal and dual geodesics differ from the dually flat case. Further results can be found in our follow-up paper [27] which uncovers a novel relation between optimal transport and information geometry.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro