Local Advantage Actor-Critic for Robust Multi-Agent Deep Reinforcement Learning

10/16/2021
by   Yuchen Xiao, et al.
0

Policy gradient methods have become popular in multi-agent reinforcement learning, but they suffer from high variance due to the presence of environmental stochasticity and exploring agents (i.e., non-stationarity), which is potentially worsened by the difficulty in credit assignment. As a result, there is a need for a method that is not only capable of efficiently solving the above two problems but also robust enough to solve a variety of tasks. To this end, we propose a new multi-agent policy gradient method, called Robust Local Advantage (ROLA) Actor-Critic. ROLA allows each agent to learn an individual action-value function as a local critic as well as ameliorating environment non-stationarity via a novel centralized training approach based on a centralized critic. By using this local critic, each agent calculates a baseline to reduce variance on its policy gradient estimation, which results in an expected advantage action-value over other agents' choices that implicitly improves credit assignment. We evaluate ROLA across diverse benchmarks and show its robustness and effectiveness over a number of state-of-the-art multi-agent policy gradient algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro