Likelihood Approximation With Hierarchical Matrices For Large Spatial Datasets

09/08/2017
by   Alexander Litvinenko, et al.
0

We use available measurements to estimate the unknown parameters (variance, smoothness parameter, and covariance length) of a covariance function by maximizing the joint Gaussian log-likelihood function. To overcome cubic complexity in the linear algebra, we approximate the discretized covariance function in the hierarchical (H-) matrix format. The H-matrix format has a log-linear computational cost and storage O(kn n), where the rank k is a small integer and n is the number of locations. The H-matrix technique allows us to work with general covariance matrices in an efficient way, since H-matrices can approximate inhomogeneous covariance functions, with a fairly general mesh that is not necessarily axes-parallel, and neither the covariance matrix itself nor its inverse have to be sparse. We demonstrate our method with Monte Carlo simulations and an application to soil moisture data. The C, C++ codes and data are freely available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro