Learning Tree Distributions by Hidden Markov Models

05/31/2018
by   Davide Bacciu, et al.
0

Hidden tree Markov models allow learning distributions for tree structured data while being interpretable as nondeterministic automata. We provide a concise summary of the main approaches in literature, focusing in particular on the causality assumptions introduced by the choice of a specific tree visit direction. We will then sketch a novel non-parametric generalization of the bottom-up hidden tree Markov model with its interpretation as a nondeterministic tree automaton with infinite states.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro