Learning to Segment Medical Images with Scribble-Supervision Alone

07/12/2018
by   Yigit B. Can, et al.
6

Semantic segmentation of medical images is a crucial step for the quantification of healthy anatomy and diseases alike. The majority of the current state-of-the-art segmentation algorithms are based on deep neural networks and rely on large datasets with full pixel-wise annotations. Producing such annotations can often only be done by medical professionals and requires large amounts of valuable time. Training a medical image segmentation network with weak annotations remains a relatively unexplored topic. In this work we investigate training strategies to learn the parameters of a pixel-wise segmentation network from scribble annotations alone. We evaluate the techniques on public cardiac (ACDC) and prostate (NCI-ISBI) segmentation datasets. We find that the networks trained on scribbles suffer from a remarkably small degradation in Dice of only 2.9 with respect to a network trained on full annotations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro