Learning regression and verification networks for long-term visual tracking

09/12/2018
by   Yunhua Zhang, et al.
0

In the long-term single object tracking task, the target moves out of view frequently. It is difficult to determine the presence of the target and re-search the target in the entire image. In this paper, we circumvent this issue by introducing a collaborative framework that exploits both matching mechanism and discriminative features to account for target identification and image-wide re-detection. Within the proposed collaborative framework, we develop a matching based regression module and a classification based verification module for long-term visual tracking. In the regression module, we present a regressor that conducts matching learning and copes with drastic appearance changes. In the verification module, we propose a classifier that filters out distractions efficiently. Compared to previous long-term trackers, the proposed tracker is able to track the target object more robustly in long-term sequences. Extensive experiments show that our algorithm achieves state-of-the-art results on several datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro