Learning Low-Rank Approximation for CNNs

05/24/2019
by   Dongsoo Lee, et al.
0

Low-rank approximation is an effective model compression technique to not only reduce parameter storage requirements, but to also reduce computations. For convolutional neural networks (CNNs), however, well-known low-rank approximation methods, such as Tucker or CP decomposition, result in degraded model accuracy because decomposed layers hinder training convergence. In this paper, we propose a new training technique that finds a flat minimum in the view of low-rank approximation without a decomposed structure during training. By preserving the original model structure, 2-dimensional low-rank approximation demanding lowering (such as im2col) is available in our proposed scheme. We show that CNN models can be compressed by low-rank approximation with much higher compression ratio than conventional training methods while maintaining or even enhancing model accuracy. We also discuss various 2-dimensional low-rank approximation techniques for CNNs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro