Learning Differential Invariants of Planar Curves

03/06/2023
by   Roy Velich, et al.
0

We propose a learning paradigm for the numerical approximation of differential invariants of planar curves. Deep neural-networks' (DNNs) universal approximation properties are utilized to estimate geometric measures. The proposed framework is shown to be a preferable alternative to axiomatic constructions. Specifically, we show that DNNs can learn to overcome instabilities and sampling artifacts and produce consistent signatures for curves subject to a given group of transformations in the plane. We compare the proposed schemes to alternative state-of-the-art axiomatic constructions of differential invariants. We evaluate our models qualitatively and quantitatively and propose a benchmark dataset to evaluate approximation models of differential invariants of planar curves.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro