Learning Dense Representations of Phrases at Scale

12/23/2020
by   Jinhyuk Lee, et al.
0

Open-domain question answering can be reformulated as a phrase retrieval problem, without the need for processing documents on-demand during inference (Seo et al., 2019). However, current phrase retrieval models heavily depend on their sparse representations while still underperforming retriever-reader approaches. In this work, we show for the first time that we can learn dense phrase representations alone that achieve much stronger performance in open-domain QA. Our approach includes (1) learning query-agnostic phrase representations via question generation and distillation; (2) novel negative-sampling methods for global normalization; (3) query-side fine-tuning for transfer learning. On five popular QA datasets, our model DensePhrases improves previous phrase retrieval models by 15 matches the performance of state-of-the-art retriever-reader models. Our model is easy to parallelize due to pure dense representations and processes more than 10 questions per second on CPUs. Finally, we directly use our pre-indexed dense phrase representations for two slot filling tasks, showing the promise of utilizing DensePhrases as a dense knowledge base for downstream tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro