Learning a Multi-Modal Policy via Imitating Demonstrations with Mixed Behaviors

03/25/2019
by   Fang-I Hsiao, et al.
0

We propose a novel approach to train a multi-modal policy from mixed demonstrations without their behavior labels. We develop a method to discover the latent factors of variation in the demonstrations. Specifically, our method is based on the variational autoencoder with a categorical latent variable. The encoder infers discrete latent factors corresponding to different behaviors from demonstrations. The decoder, as a policy, performs the behaviors accordingly. Once learned, the policy is able to reproduce a specific behavior by simply conditioning on a categorical vector. We evaluate our method on three different tasks, including a challenging task with high-dimensional visual inputs. Experimental results show that our approach is better than various baseline methods and competitive with a multi-modal policy trained by ground truth behavior labels.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro