Learned imaging with constraints and uncertainty quantification

09/13/2019
by   Felix J. Herrmann, et al.
0

We outline new approaches to incorporate ideas from convolutional networks into wave-based least-squares imaging. The aim is to combine hand-crafted constraints with deep convolutional networks allowing us to directly train a network capable of generating samples from the posterior. The main contributions include combination of weak deep priors with hard handcrafted constraints and a possible new way to sample the posterior.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro