Layer-Wise Cross-View Decoding for Sequence-to-Sequence Learning

05/16/2020
by   Fenglin Liu, et al.
0

In sequence-to-sequence learning, the attention mechanism has been a great success in bridging the information between the encoder and the decoder. However, it is often overlooked that the decoder only has a single view of the source sequences, that is, the representations generated by the last encoder layer, which is supposed to be a global view of source sequences. Such implementation hinders the decoder from concrete, fine-grained, local source information. In this work, we explore to reuse the representations from different encoder layers for layer-wise cross-view decoding, that is, different views of the source sequences are presented to different decoder layers. We investigate multiple, representative strategies for cross-view coding, of which the granularity consistent attention (GCA) strategy proves the most efficient and effective in the experiments on neural machine translation task. Especially, GCA surpasses the previous state-of-the-art architecture on three machine translation datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro