Latin Hypercubes and Cellular Automata

04/15/2020
by   Maximilien Gadouleau, et al.
0

Latin squares and hypercubes are combinatorial designs with several applications in statistics, cryptography and coding theory. In this paper, we generalize a construction of Latin squares based on bipermutive cellular automata (CA) to the case of Latin hypercubes of dimension k>2. In particular, we prove that linear bipermutive CA (LBCA) yielding Latin hypercubes of dimension k>2 are defined by sequences of invertible Toeplitz matrices with partially overlapping coefficients, which can be described by a specific kind of regular de Bruijn graph induced by the support of the determinant function. Further, we derive the number of k-dimensional Latin hypercubes generated by LBCA by counting the number of paths of length k-3 on this de Bruijn graph.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro