Latent Space Regularization for Unsupervised Domain Adaptation in Semantic Segmentation

04/06/2021
by   Francesco Barbato, et al.
0

Deep convolutional neural networks for semantic segmentation allow to achieve outstanding accuracy, however they also have a couple of major drawbacks: first, they do not generalize well to distributions slightly different from the one of the training data; second, they require a huge amount of labeled data for their optimization. In this paper, we introduce feature-level space-shaping regularization strategies to reduce the domain discrepancy in semantic segmentation. In particular, for this purpose we jointly enforce a clustering objective, a perpendicularity constraint and a norm alignment goal on the feature vectors corresponding to source and target samples. Additionally, we propose a novel measure able to capture the relative efficacy of an adaptation strategy compared to supervised training. We verify the effectiveness of such methods in the autonomous driving setting achieving state-of-the-art results in multiple synthetic-to-real road scenes benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro