Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification

03/21/2019
by   Leo L. Duan, et al.
0

High dimensional data often contain multiple facets, and several clustering patterns (views) can co-exist under different feature subspaces. While multi-view clustering algorithms were proposed, the uncertainty quantification remains difficult --- a particular challenge is in the high complexity of estimating the cluster assignment probability under each view, or/and to efficiently share information across views. In this article, we propose an empirical Bayes approach --- viewing the similarity matrices generated over subspaces as rough first-stage estimates for co-assignment probabilities, in its Kullback-Leibler neighborhood we obtain a refined low-rank soft cluster graph, formed by the pairwise product of simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster assignment uncertainty. For multi-view clustering, we equip each similarity matrix with a mixed membership over a small number of latent views, leading to effective dimension reduction. With a high model flexibility, the estimation can be succinctly re-parameterized as a continuous optimization problem, hence enjoys gradient-based computation. Theory establishes the connection of this model to random cluster graph under multiple views. Compared to single-view clustering approaches, substantially more interpretable results are obtained when clustering brains from human traumatic brain injury study, using high-dimensional gene expression data. KEY WORDS: Co-regularized Clustering, Consensus, PAC-Bayes, Random Cluster Graph, Variable Selection

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro