Latent Distribution Assumption for Unbiased and Consistent Consensus Modelling

06/20/2019
by   Valentina Fedorova, et al.
0

We study the problem of aggregation noisy labels. Usually, it is solved by proposing a stochastic model for the process of generating noisy labels and then estimating the model parameters using the observed noisy labels. A traditional assumption underlying previously introduced generative models is that each object has one latent true label. In contrast, we introduce a novel latent distribution assumption, implying that a unique true label for an object might not exist, but rather each object might have a specific distribution generating a latent subjective label each time the object is observed. Our experiments showed that the novel assumption is more suitable for difficult tasks, when there is an ambiguity in choosing a "true" label for certain objects.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro