L1-norm Kernel PCA

09/28/2017
by   Cheolmin Kim, et al.
0

We present the first model and algorithm for L1-norm kernel PCA. While L2-norm kernel PCA has been widely studied, there has been no work on L1-norm kernel PCA. For this non-convex and non-smooth problem, we offer geometric understandings through reformulations and present an efficient algorithm where the kernel trick is applicable. To attest the efficiency of the algorithm, we provide a convergence analysis including linear rate of convergence. Moreover, we prove that the output of our algorithm is a local optimal solution to the L1-norm kernel PCA problem. We also numerically show its robustness when extracting principal components in the presence of influential outliers, as well as its runtime comparability to L2-norm kernel PCA. Lastly, we introduce its application to outlier detection and show that the L1-norm kernel PCA based model outperforms especially for high dimensional data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro