Knowledge Distillation in Generations: More Tolerant Teachers Educate Better Students

05/15/2018
by   Chenglin Yang, et al.
0

This paper studies teacher-student optimization on neural networks, i.e., adopting the supervision from a trained (teacher) network to optimize another (student) network. Conventional approaches enforced the student to learn from a strict teacher which fit a hard distribution and achieved high recognition accuracy, but we argue that a more tolerant teacher often educate better students. We start with adding an extra loss term to a patriarch network so that it preserves confidence scores on a primary class (the ground-truth) and several visually-similar secondary classes. The patriarch is also known as the first teacher. In each of the following generations, a student learns from the teacher and becomes the new teacher in the next generation. Although the patriarch is less powerful due to ambiguity, the students enjoy a persistent ability growth as we gradually fine-tune them to fit one-hot distributions. We investigate standard image classification tasks (CIFAR100 and ILSVRC2012). Experiments with different network architectures verify the superiority of our approach, either using a single model or an ensemble of models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro