KM-BART: Knowledge Enhanced Multimodal BART for Visual Commonsense Generation

01/02/2021
by   Yiran Xing, et al.
0

We present Knowledge Enhanced Multimodal BART (KM-BART), which is a Transformer-based sequence-to-sequence model capable of reasoning about commonsense knowledge from multimodal inputs of images and texts. We extend the popular BART architecture to a multi-modal model. We design a new pretraining task to improve the model performance on Visual Commonsense Generation task. Our pretraining task improves the Visual Commonsense Generation performance by leveraging knowledge from a large language model pretrained on an external knowledge graph. To the best of our knowledge, we are the first to propose a dedicated task for improving model performance on Visual Commonsense Generation. Experimental results show that by pretraining, our model reaches state-of-the-art performance on the Visual Commonsense Generation task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro