Kernelized Locality-Sensitive Hashing for Semi-Supervised Agglomerative Clustering

01/16/2013
by   Boyi Xie, et al.
0

Large scale agglomerative clustering is hindered by computational burdens. We propose a novel scheme where exact inter-instance distance calculation is replaced by the Hamming distance between Kernelized Locality-Sensitive Hashing (KLSH) hashed values. This results in a method that drastically decreases computation time. Additionally, we take advantage of certain labeled data points via distance metric learning to achieve a competitive precision and recall comparing to K-Means but in much less computation time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro