Kernel regression for cause-specific hazard models with time-dependent coefficients

07/23/2021
by   Xiaomeng Qi, et al.
0

Competing risk data appear widely in modern biomedical research. Cause-specific hazard models are often used to deal with competing risk data in the past two decades. There is no current study on the kernel likelihood method for the cause-specific hazard model with time-varying coefficients. We propose to use the local partial log-likelihood approach for nonparametric time-varying coefficient estimation. Simulation studies demonstrate that our proposed nonparametric kernel estimator has a good performance under assumed finite sample settings. Finally, we apply the proposed method to analyze a diabetes dialysis study with competing death causes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro