k-Space Deep Learning for Accelerated MRI

05/10/2018
by   Yoseob Han, et al.
2

The annihilating filter-based low-rank Hanel matrix approach (ALOHA) is one of the state-of-the-art compressed sensing approaches that directly interpolates the missing k-space data using low-rank Hankel matrix completion. Inspired by the recent mathematical discovery that links deep neural networks to Hankel matrix decomposition using data-driven framelet basis, here we propose a fully data-driven deep learning algorithm for k-space interpolation. Our network can be also easily applied to non-Cartesian k-space trajectories by simply adding an additional re-gridding layer. Extensive numerical experiments show that the proposed deep learning method significantly outperforms the existing image-domain deep learning approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro