K-Core Minimization: A Game Theoretic Approach

01/08/2019
by   Sourav Medya, et al.
0

K-cores are maximal induced subgraphs where all vertices have degree at least k. These dense patterns have applications in community detection, network visualization and protein function prediction. However, k-cores can be quite unstable to network modifications, which motivates the question: How resilient is the k-core structure of a network, such as the Web or Facebook, to edge deletions? We investigate this question from an algorithmic perspective. More specifically, we study the problem of computing a small set of edges for which the removal minimizes the k-core structure of a network. This paper provides a comprehensive characterization of the hardness of the k-core minimization problem (KCM), including innaproximability and fixed-parameter intractability. Motivated by such a challenge in terms of algorithm design, we propose a novel algorithm inspired by Shapley value---a cooperative game-theoretic concept--- that is able to leverage the strong interdependencies in the effects of edge removals in the search space. As computing Shapley values is also NP-hard, we efficiently approximate them using a randomized algorithm with probabilistic guarantees. Our experiments, using several real datasets, show that the proposed algorithm outperforms competing solutions in terms of k-core minimization while being able to handle large graphs. Moreover, we illustrate how KCM can be applied in the analysis of the k-core resilience of networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro