Just Jump: Dynamic Neighborhood Aggregation in Graph Neural Networks

04/09/2019
by   Matthias Fey, et al.
0

We propose a dynamic neighborhood aggregation (DNA) procedure guided by (multi-head) attention for representation learning on graphs. In contrast to current graph neural networks which follow a simple neighborhood aggregation scheme, our DNA procedure allows for a selective and node-adaptive aggregation of neighboring embeddings of potentially differing locality. In order to avoid overfitting, we propose to control the channel-wise connections between input and output by making use of grouped linear projections. In a number of transductive node-classification experiments, we demonstrate the effectiveness of our approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro