Isometric Multi-Manifolds Learning

12/03/2009
by   Mingyu Fan, et al.
0

Isometric feature mapping (Isomap) is a promising manifold learning method. However, Isomap fails to work on data which distribute on clusters in a single manifold or manifolds. Many works have been done on extending Isomap to multi-manifolds learning. In this paper, we first proposed a new multi-manifolds learning algorithm (M-Isomap) with help of a general procedure. The new algorithm preserves intra-manifold geodesics and multiple inter-manifolds edges precisely. Compared with previous methods, this algorithm can isometrically learn data distributed on several manifolds. Secondly, the original multi-cluster manifold learning algorithm first proposed in DCIsomap and called D-C Isomap has been revised so that the revised D-C Isomap can learn multi-manifolds data. Finally, the features and effectiveness of the proposed multi-manifolds learning algorithms are demonstrated and compared through experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro