Is AI Model Interpretable to Combat with COVID? An Empirical Study on Severity Prediction Task

09/30/2020
by   Han Wu, et al.
0

Black-box nature hinders the deployment of many high-accuracy models in medical diagnosis. Putting one's life in the hands of models that medical researchers do not trust it's irresponsible. However, to understand the mechanism of a new virus, such as COVID-19, machine learning models may catch important symptoms that medical practitioners do not notice due to the surge of infected patients caused by a pandemic. In this work, the interpretation of machine learning models reveals a high CRP corresponds to severe infection, and severe patients usually go through a cardiac injury, which is consistent with medical knowledge. Additionally, through the interpretation of machine learning models, we find phlegm and diarrhea are two important symptoms, without which indicate a high risk of turning severe. These two symptoms are not recognized at the early stage of the outbreak, but later our findings are corroborated by autopsies of COVID-19 patients. And we find patients with a high NTproBNP have a significantly increased risk of death which does not receive much attention initially but proves true by the following-up study. Thus, we suggest interpreting machine learning models can offer help to understanding a new virus at the early stage of an outbreak.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro