Interactive Learning of Hierarchical Tasks from Dialog with GPT

05/17/2023
by   Lane Lawley, et al.
0

We present a system for interpretable, symbolic, interactive task learning from dialog using a GPT model as a conversational front-end. The learned tasks are represented as hierarchical decompositions of predicate-argument structures with scoped variable arguments. By using a GPT model to convert interactive dialog into a semantic representation, and then recursively asking for definitions of unknown steps, we show that hierarchical task knowledge can be acquired and re-used in a natural and unrestrained conversational environment. We compare our system to a similar architecture using a more conventional parser and show that our system tolerates a much wider variety of linguistic variance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro