Inference via Randomized Test Statistics

12/13/2021
by   Nikita Puchkin, et al.
0

We show that external randomization may enforce the convergence of test statistics to their limiting distributions in particular cases. This results in a sharper inference. Our approach is based on a central limit theorem for weighted sums. We apply our method to a family of rank-based test statistics and a family of phi-divergence test statistics and prove that, with overwhelming probability with respect to the external randomization, the randomized statistics converge at the rate O(1/n) (up to some logarithmic factors) to the limiting chi-square distribution in Kolmogorov metric.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro