In-Memory Indexed Caching for Distributed Data Processing

12/12/2021
by   Alexandru Uta, et al.
0

Powerful abstractions such as dataframes are only as efficient as their underlying runtime system. The de-facto distributed data processing framework, Apache Spark, is poorly suited for the modern cloud-based data-science workloads due to its outdated assumptions: static datasets analyzed using coarse-grained transformations. In this paper, we introduce the Indexed DataFrame, an in-memory cache that supports a dataframe abstraction which incorporates indexing capabilities to support fast lookup and join operations. Moreover, it supports appends with multi-version concurrency control. We implement the Indexed DataFrame as a lightweight, standalone library which can be integrated with minimum effort in existing Spark programs. We analyze the performance of the Indexed DataFrame in cluster and cloud deployments with real-world datasets and benchmarks using both Apache Spark and Databricks Runtime. In our evaluation, we show that the Indexed DataFrame significantly speeds-up query execution when compared to a non-indexed dataframe, incurring modest memory overhead.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro