Improving supervised prediction of aging-related genes via dynamic network analysis

05/07/2020
by   Qi Li, et al.
0

This study focuses on supervised prediction of aging-related genes from -omics data. Unlike gene expression methods that capture aging-specific information but study genes in isolation, or protein-protein interaction (PPI) network methods that account for PPIs but the PPIs are context-unspecific, we recently integrated the two data types into an aging-specific PPI subnetwork, which yielded more accurate aging-related gene predictions. However, a dynamic aging-specific subnetwork did improve prediction performance compared to a static aging-specific subnetwork, despite the aging process being dynamic. So, here, we propose computational advances towards improving prediction accuracy from a dynamic aging-specific subnetwork. We develop a supervised learning model that when applied to a dynamic subnetwork yields extremely high prediction performance, with F-score of 91.4 static subnetwork yields F-score of "only" 74.3 could guide with high confidence the discovery of novel aging-related gene candidates for future wet lab validation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro