Improving Lexically Constrained Neural Machine Translation with Source-Conditioned Masked Span Prediction

05/12/2021
by   Gyubok Lee, et al.
0

Generating accurate terminology is a crucial component for the practicality and reliability of neural machine translation (NMT) systems. To address this, lexically constrained NMT explores various methods to ensure pre-specified words and phrases to appear in the translations. In many cases, however, those methods are evaluated on general domain corpora, where the terms are mostly uni- and bi-grams (>98 setup consisting of domain-specific corpora with much longer n-gram and highly specialized terms. To encourage span-level representations in generation, we additionally impose a source-sentence conditioned masked span prediction loss in the decoder and observe improvements on both terminology translation as well as BLEU scores. Experimental results on three domain-specific corpora in two language pairs demonstrate that the proposed training scheme can improve the performance of existing lexically constrained methods that can operate both with or without a term dictionary at test time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro