Impact of Domain-Adapted Multilingual Neural Machine Translation in the Medical Domain

12/05/2022
by   Miguel Rios, et al.
0

Multilingual Neural Machine Translation (MNMT) models leverage many language pairs during training to improve translation quality for low-resource languages by transferring knowledge from high-resource languages. We study the quality of a domain-adapted MNMT model in the medical domain for English-Romanian with automatic metrics and a human error typology annotation which includes terminology-specific error categories. We compare the out-of-domain MNMT with the in-domain adapted MNMT. The in-domain MNMT model outperforms the out-of-domain MNMT in all measured automatic metrics and produces fewer terminology errors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro