Hypercontractivity on High Dimensional Expanders: Approximate Efron-Stein Decompositions for ε-Product Spaces

11/17/2021
by   Tom Gur, et al.
0

We prove hypercontractive inequalities on high dimensional expanders. As in the settings of the p-biased hypercube, the symmetric group, and the Grassmann scheme, our inequalities are effective for global functions, which are functions that are not significantly affected by a restriction of a small set of coordinates. As applications, we obtain Fourier concentration, small-set expansion, and Kruskal-Katona theorems for high dimensional expanders. Our techniques rely on a new approximate Efron-Stein decomposition for high dimensional link expanders.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro