Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate models

01/06/2021
by   Jeroen van Hoof, et al.
35

Bayesian Optimization is a popular tool for tuning algorithms in automatic machine learning (AutoML) systems. Current state-of-the-art methods leverage Random Forests or Gaussian processes to build a surrogate model that predicts algorithm performance given a certain set of hyperparameter settings. In this paper, we propose a new surrogate model based on gradient boosting, where we use quantile regression to provide optimistic estimates of the performance of an unobserved hyperparameter setting, and combine this with a distance metric between unobserved and observed hyperparameter settings to help regulate exploration. We demonstrate empirically that the new method is able to outperform some state-of-the art techniques across a reasonable sized set of classification problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro