How Robust are Timely Gossip Networks to Jamming Attacks?

03/20/2023
by   Priyanka Kaswan, et al.
0

We consider a semantics-aware communication system, where timeliness is the semantic measure, with a source which maintains the most current version of a file, and a network of n user nodes with the goal to acquire the latest version of the file. The source gets updated with newer file versions as a point process, and forwards them to the user nodes, which further forward them to their neighbors using a memoryless gossip protocol. We study the average version age of the network in the presence of ñ jammers that disrupt inter-node communications, for the connectivity-constrained ring topology and the connectivity-rich fully connected topology. For the ring topology, we construct an alternate system model of mini-rings and prove that the version age of the original model can be sandwiched between constant multiples of the version age of the alternate model. We show in a ring network that when the number of jammers scales as a fractional power of the network size, i.e., ñ= cn^α, the version age scales as √(n) when α < 1/2, and as n^α when α≥1/2. As version age of a ring network without any jammers scales as √(n), our result implies that version age with gossiping is robust against upto √(n) jammers in a ring network. We then study the connectivity-rich fully connected topology, where we derive a greedy approach to place ñ jammers to maximize age of the resultant network, which uses jammers to isolate as many nodes as possible, thereby consolidating all links into a single mini-fully connected network. We show in this network that version age scales as logn when ñ=cnlogn and as n^α-1, 1<α≤2 when ñ=cn^α, implying the network is robust against nlogn jammers, since the age in a fully connected network without jammers scales as logn.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro