How Reliable are Bootstrap-based Heteroskedasticity Robust Tests?

05/08/2020
by   Benedikt M. Pötscher, et al.
0

We develop theoretical finite-sample results concerning the size of wild bootstrap-based heteroskedasticity robust tests in linear regression models. In particular, these results provide an efficient diagnostic check, which can be used to weed out tests that are unreliable for a given testing problem in the sense that they overreject substantially. This allows us to assess the reliability of a large variety of wild bootstrap-based tests in an extensive numerical study.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro