Horseshoe priors for edge-preserving linear Bayesian inversion

07/19/2022
by   Felipe Uribe, et al.
0

In many large-scale inverse problems, such as computed tomography and image deblurring, characterization of sharp edges in the solution is desired. Within the Bayesian approach to inverse problems, edge-preservation is often achieved using Markov random field priors based on heavy-tailed distributions. Another strategy, popular in statistics, is the application of hierarchical shrinkage priors. An advantage of this formulation lies in expressing the prior as a conditionally Gaussian distribution depending of global and local hyperparameters which are endowed with heavy-tailed hyperpriors. In this work, we revisit the shrinkage horseshoe prior and introduce its formulation for edge-preserving settings. We discuss a sampling framework based on the Gibbs sampler to solve the resulting hierarchical formulation of the Bayesian inverse problem. In particular, one of the conditional distributions is high-dimensional Gaussian, and the rest are derived in closed form by using a scale mixture representation of the heavy-tailed hyperpriors. Applications from imaging science show that our computational procedure is able to compute sharp edge-preserving posterior point estimates with reduced uncertainty.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro