HMPO: Human Motion Prediction in Occluded Environments for Safe Motion Planning

05/31/2020
by   Jae Sung Park, et al.
0

We present a novel approach to generate collision-free trajectories for a robot operating in close proximity with a human obstacle in an occluded environment. The self-occlusions of the robot can significantly reduce the accuracy of human motion prediction, and we present a novel deep learning-based prediction algorithm. Our formulation uses CNNs and LSTMs and we augment human-action datasets with synthetically generated occlusion information for training. We also present an occlusion-aware planner that uses our motion prediction algorithm to compute collision-free trajectories. We highlight performance of the overall approach (HMPO) in complex scenarios and observe upto 68 improvement in terms of error distance between the ground-truth and the predicted human joint positions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro