Hire-MLP: Vision MLP via Hierarchical Rearrangement

08/30/2021
by   Jianyuan Guo, et al.
0

This paper presents Hire-MLP, a simple yet competitive vision MLP architecture via hierarchical rearrangement. Previous vision MLPs like MLP-Mixer are not flexible for various image sizes and are inefficient to capture spatial information by flattening the tokens. Hire-MLP innovates the existing MLP-based models by proposing the idea of hierarchical rearrangement to aggregate the local and global spatial information while being versatile for downstream tasks. Specifically, the inner-region rearrangement is designed to capture local information inside a spatial region. Moreover, to enable information communication between different regions and capture global context, the cross-region rearrangement is proposed to circularly shift all tokens along spatial directions. The proposed Hire-MLP architecture is built with simple channel-mixing MLPs and rearrangement operations, thus enjoys high flexibility and inference speed. Experiments show that our Hire-MLP achieves state-of-the-art performance on the ImageNet-1K benchmark. In particular, Hire-MLP achieves an 83.4% top-1 accuracy on ImageNet, which surpasses previous Transformer-based and MLP-based models with better trade-off for accuracy and throughput.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro