High-risk learning: acquiring new word vectors from tiny data

07/20/2017
by   Aurélie Herbelot, et al.
0

Distributional semantics models are known to struggle with small data. It is generally accepted that in order to learn 'a good vector' for a word, a model must have sufficient examples of its usage. This contradicts the fact that humans can guess the meaning of a word from a few occurrences only. In this paper, we show that a neural language model such as Word2Vec only necessitates minor modifications to its standard architecture to learn new terms from tiny data, using background knowledge from a previously learnt semantic space. We test our model on word definitions and on a nonce task involving 2-6 sentences' worth of context, showing a large increase in performance over state-of-the-art models on the definitional task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro