High-order Order Proximity-Incorporated, Symmetry and Graph-Regularized Nonnegative Matrix Factorization for Community Detection

03/08/2022
by   Zhigang Liu, et al.
0

Community describes the functional mechanism of a network, making community detection serve as a fundamental graph tool for various real applications like discovery of social circle. To date, a Symmetric and Non-negative Matrix Factorization (SNMF) model has been frequently adopted to address this issue owing to its high interpretability and scalability. However, most existing SNMF-based community detection methods neglect the high-order connection patterns in a network. Motivated by this discovery, in this paper, we propose a High-Order Proximity (HOP)-incorporated, Symmetry and Graph-regularized NMF (HSGN) model that adopts the following three-fold ideas: a) adopting a weighted pointwise mutual information (PMI)-based approach to measure the HOP indices among nodes in a network; b) leveraging an iterative reconstruction scheme to encode the captured HOP into the network; and c) introducing a symmetry and graph-regularized NMF algorithm to detect communities accurately. Extensive empirical studies on eight real-world networks demonstrate that an HSGN-based community detector significantly outperforms both benchmark and state-of-the-art community detectors in providing highly-accurate community detection results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro