High-Frequency aware Perceptual Image Enhancement

05/25/2021
by   Hyungmin Roh, et al.
2

In this paper, we introduce a novel deep neural network suitable for multi-scale analysis and propose efficient model-agnostic methods that help the network extract information from high-frequency domains to reconstruct clearer images. Our model can be applied to multi-scale image enhancement problems including denoising, deblurring and single image super-resolution. Experiments on SIDD, Flickr2K, DIV2K, and REDS datasets show that our method achieves state-of-the-art performance on each task. Furthermore, we show that our model can overcome the over-smoothing problem commonly observed in existing PSNR-oriented methods and generate more natural high-resolution images by applying adversarial training.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro