Hierarchical Critics Assignment for Multi-agent Reinforcement Learning

02/08/2019
by   Zehong Cao, et al.
0

In this paper, we investigate the use of global information to speed up the learning process and increase the cumulative rewards of multi-agent reinforcement learning (MARL) tasks. Within the actor-critic MARL, we introduce multiple cooperative critics from two levels of the hierarchy and propose a hierarchical critic-based multi-agent reinforcement learning algorithm. In our approach, the agent is allowed to receive information from local and global critics in a competition task. The agent not only receives low-level details but also consider coordination from high levels that receiving global information to increase operation skills. Here, we define multiple cooperative critics in the top-bottom hierarchy, called the Hierarchical Critics Assignment (HCA) framework. Our experiment, a two-player tennis competition task in the Unity environment, tested HCA multi-agent framework based on Asynchronous Advantage Actor-Critic (A3C) with Proximal Policy Optimization (PPO) algorithm. The results showed that the HCA- framework outperforms the non-hierarchical critics baseline method for MARL tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro