Hardness-guided domain adaptation to recognise biomedical named entities under low-resource scenarios

11/11/2022
by   Ngoc Dang Nguyen, et al.
0

Domain adaptation is an effective solution to data scarcity in low-resource scenarios. However, when applied to token-level tasks such as bioNER, domain adaptation methods often suffer from the challenging linguistic characteristics that clinical narratives possess, which leads to unsatisfactory performance. In this paper, we present a simple yet effective hardness-guided domain adaptation (HGDA) framework for bioNER tasks that can effectively leverage the domain hardness information to improve the adaptability of the learnt model in low-resource scenarios. Experimental results on biomedical datasets show that our model can achieve significant performance improvement over the recently published state-of-the-art (SOTA) MetaNER model

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro