Guided Image-to-Image Translation with Bi-Directional Feature Transformation

10/24/2019
by   Badour AlBahar, et al.
32

We address the problem of guided image-to-image translation where we translate an input image into another while respecting the constraints provided by an external, user-provided guidance image. Various conditioning methods for leveraging the given guidance image have been explored, including input concatenation , feature concatenation, and conditional affine transformation of feature activations. All these conditioning mechanisms, however, are uni-directional, i.e., no information flow from the input image back to the guidance. To better utilize the constraints of the guidance image, we present a bi-directional feature transformation (bFT) scheme. We show that our bFT scheme outperforms other conditioning schemes and has comparable results to state-of-the-art methods on different tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro