Grafting Laplace and Gaussian distributions: A new noise mechanism for differential privacy

12/19/2022
by   Gokularam Muthukrishnan, et al.
0

The framework of Differential privacy protects an individual's privacy while publishing query responses on congregated data. In this work, a new noise addition mechanism for differential privacy is introduced where the noise added is sampled from a hybrid density that resembles Laplace in the centre and Gaussian in the tail. With a sharper centre and light, sub-Gaussian tail, this density has the best characteristics of both distributions. We theoretically analyse the proposed mechanism and we derive the necessary and sufficient condition in one dimension and a sufficient condition in high dimensions for the mechanism to guarantee (ϵ,δ)-differential privacy. Numerical simulations corroborate the efficacy of the proposed mechanism compared to other existing mechanisms in achieving better trade-off for privacy and accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro