GPU Offloading in ExaHyPE Through C++ Standard Algorithms

02/17/2023
by   Uzmar Gomez, et al.
0

The ISO C++17 standard introduces parallel algorithms, a parallel programming model promising portability across a wide variety of parallel hardware including multi-core CPUs, GPUs, and FPGAs. Since 2019, the NVIDIA HPC SDK compiler suite supports this programming model for multi-core CPUs and GPUs. ExaHyPE is a solver engine for hyperbolic partial differential equations for complex wave phenomena. It supports multiple numerical methods including Finite Volumes and ADER-DG, and employs adaptive mesh refinement with dynamic load balancing via space-filling curves as well as task-based parallelism and offloading to GPUs. This study ports ExaHyPE's tasks over blocks of Finite Volumes to the ISO C++ parallel algorithms programming model, and compares its performance and usability against an OpenMP implementation with offloading via OpenMP target directives. It shows that ISO C++ is a feasible programming model for non-trivial applications like our task-based AMR code. The realisation is bare of vendor-specific or non-C++ extensions. It however is slower than its OpenMP counterpart.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro